Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
4 Answers
- llafferLv 710 months agoFavorite Answer
We've got a few layers of chain rules and product rules. Let's try to break this down:
y = ln|(1 - x)e^(-3x)|
if we say:
u = |(1 - x)e^(-3x)|
then we have:
y = ln(u)
This derivative is simple:
dy/du = 1/u
Now we need to get du/dx, which is another chain rule:
u = |(1 - x)e^(-3x)|
if we say:
v = (1 - x)e^(-3x)
then:
u = |v|
du/dv = -1 if x > 1
du/dv = 1 if x < 1
Since we are looking for f'(2) ultimately, let's call this:
du/dv = -1
Now we need dv/dx. Product rule:
v = (1 - x)e^(-3x)
dv/dx = (-1)e^(-3x) + (1 - x)(-3)e^(-3x)
dv/dx = -e^(-3x) - 3(1 - x)e^(-3x)
dv/dx = [-1 - 3(1 - x)]e^(-3x)
dv/dx = (-1 - 3 + 3x)e^(-3x)
dv/dx = (-4 + 3x)e^(-3x)
dy/dx = dy/du * du/dv * dv/dx
dy/dx = (1/u) * (-1) * (-4 + 3x)e^(-3x)
dy/dx = -(-4 + 3x)e^(-3x) / u
dy/dx = (4 - 3x)e^(-3x) / u
Put in u's expression back:
dy/dx = (4 - 3x)e^(-3x) / |(1 - x)e^(-3x)|
Now set x = 2 and solve for dy/dx:
dy/dx = (4 - 3 * 2)e^(-3 * 2) / |(1 - 2)e^(-3 * 2)|
dy/dx = (4 - 6)e^(-6) / |(-1)e^(-6)|
dy/dx = -2e^(-6) / e^(-6)
dy/dx = -2
So after all that:
f'(2) = -2
- ?Lv 710 months ago
f(x)=ln|(1-x)e^(-3x)|. If 1-x<0 or x>1 then (1-x)e^(-3x)<0.
So write
f(x)=ln[-(1-x)e^(-3x)] (remove the | | sign first)=>
f '(x)=-[-3(1-x)e^(-3x)-e^(-3x)]/[-(1-x)e^(-3x)]=>
f '(x)=[e^(-3x)][3-3x+1]/[-(1-x)e^(-3x)]=>
f '(x)=[4-3x]/[-(1-x)]=>
f '(2)=[-2]/[1]=-2
- PhilipLv 610 months ago
Put f(x) = ln|g(x)| where g(x) = (1-x)e^(-3x).;
f'(x) = g'(x)/g(x)...(1).;
g'(x) = (-1)e^(-3x) + (-3)(1-x)e^(-3x) = (3x-4)e^(-3x).;
g(2) = (1-2)e^(-6) = -e^(-6).;
g'(2) = [3(2)-4]e^(-6) = 2e^(-6).;
(1)---> f'2) = g'(2)/g(2) = 2e^(-6)/-e^(-6) = -2.
- TomVLv 710 months ago
f(x) = ln|(1-x)e^(-3x)|
since e^(-3x) ≥ 0 for all x
f(x) = ln(e^(-3x)|1-x|) = ln|1-x| + ln(e^(-3x)]
= ln|1-x| - 3x
Assuming real x:
f'(x) = 1/|1-x| - 3
f'(2) = 1/|1-2| -3 = 1 - 3 = -2
Ans: f'(2) = -2